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Abstract. Denote by Bn the n-dimensional unit ball centred at o. It
is known that in every lattice packing of Bn there is a cylindrical hole of
infinite length whenever n ≥ 3. As a counterpart, this note mainly proves
the following result: For any fixed ε, ε > 0, there exist a periodic point
set P (n, ε) and a constant c(n, ε) such that Bn + P (n, ε) is a packing in
Rn, and the length of the longest segment contained in Rn \ {int(εBn) +
P (n, ε)} is bounded by c(n, ε) from above. Generalizations and applications
are presented.

§1. Introduction. Let Bn be the n-dimensional unit ball centred at
the origin o of Rn, let P be a set of discrete points such that Bn + P is
a packing, let s(Bn, P ) be the length of the longest segment contained in
Rn \ {int(Bn) + P}, and define

s(Bn) = inf
P
{s(Bn, P )},

where the infimum is taken over all the sets P such that Bn+P is a packing.
Let s∗(Bn) be the corresponding number when P is a packing lattice.

It follows from the results of Heppes [6], Hortobágyi [8], Horváth [9], and
Horváth and Rys̆kov [10] that, when n ≥ 3,

s∗(Bn) = ∞. (1)

In fact, they proved that in every lattice ball packing Bn + Λ there is a
cylindrical hole of infinite length whenever n ≥ 3.

In R2, by elementary arguments and routine computations it can be
deduced that

s(B2) = s∗(B2) = 2(
√

3− 1),

where the equality can be realized by the hexagonal disk packing.
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For convenience, we call a straight line with one end extending to infinity
a light ray. Let l(Bn) be the smallest number of non-overlapping unit balls
outside of Bn such that every light ray starting from Bn can be blocked by
them. This number has been studied by Bárány, Böröczky, Henk, Leader,
Soltan, Talata, Zong, and others (see Martini and Soltan [11] and Zong [16]).
It is proved that

2cn2(1+o(1)) ≤ l(Bn) ≤ 2c′n2(1+o(1)),

where c and c′ are some positive constants. Clearly, this result implies

s(Bn) ≥ 2cn(1+o(1)).

Based on this observation, Zong [16] proposed the following problem: Does
there exist a constant c such that

s(Bn) = 2cn(1+o(1))? (2)

Such a result will imply all the known results about blocking light rays.

We call a point set P periodic if it can be expressed as a sum of a finite
point set and a lattice. This note mainly proves the following result:

THEOREM 1. For any fixed ε, ε > 0, there exist a periodic point set P (n, ε)
and a constant c(n, ε) such that Bn + P (n, ε) is a packing in Rn and

s(εBn, P (n, ε)) ≤ c(n, ε). (3)

Although this result is far from proving (2), it shows the fundamental
difference between s(Bn) and s∗(Bn) by comparing (3) with (1). Similar to
s(Bn), one can define s(K) for any n-dimensional convex body K. Then we
have the following general result:

THEOREM 2. For any fixed n-dimensional convex body K and any fixed
ε, ε > 0, there exist a periodic point set P (K, ε) and a constant c(K, ε) such
that K + P (K, ε) is a packing and

s(εK, P (K, ε)) ≤ c(K, ε).

For more information about ball packings, we refer to Rogers [12] and
Zong [16].
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§2. Proofs of the theorems. As usual, we denote by ‖X, Y ‖ the Eu-
clidean distance between two sets X and Y , by λ(X) the minimal distance
between distinct points of X, by S(x, tv) the segment {x+ θv : 0 ≤ θ ≤ t},
where v is a unit vector, and by L(x,v) the half line {x + θv : θ ≥ 0}. In
addition, we write xi = (xi,1, xi,2, . . . , xi,n), en = (0, 0, . . . , 0, 1), and denote
by Z the set of all integers.

To prove theorem 1, by applying induction, we construct two periodic
packings of Bn based on the same (n − 1)-dimensional lattice, with the
following properties: The first one, mainly constructed in lemma 1, intersects
every long segment in the unit directions v if the last coordinate |vn| is not
too small. The second packing set, given by induction from theorem 1,
intersects every long segment in the remaining unit directions v, i.e., if |vn|
is small. Finally, we have to join these two packing sets in a proper way to
produce the packing set with the desired properties.

LEMMA 1. Let Λ be a packing lattice of Bn−1, and let α and β be
fixed numbers between 0 and 1. There exist a finite point set X = {x1 =
o,x2, . . . ,xm} in Rn = Rn−1 ⊕R1 and a constant c(Λ, n, α, β) such that
1. |xi+1,n − xi,n| = 2 for i = 1, 2, . . . ,m− 1.

2. S(x, c(Λ, n, α, β)v) ∩ (int(αBn) + Λ + X) 6= ∅ whenever xn = 0 and
vn ≥ β.

Proof. Since αBn−1 +Λ is a lattice packing in Rn−1, there exists a finite
point set X∗ ⊂ Rn−1 of minimal cardinality such that

Rn−1 ⊆ 1
2 int(αBn−1) + Λ + X∗. (4)

In other words, the system on the right-hand side of (4) is a covering of
Rn−1. For convenience, we write

k = card{X∗}.

This number depends only on Λ and α. Then we take

γ = αβ/4k (5)

and choose a finite point set V = {v1,v2, . . . ,vl} of minimal cardinality
from

Ω = {v ∈ ∂(Bn) : vn ≥ β}

3



such that the sets
Ωi = Ω ∩ (int(γBn) + vi)

form a covering in Ω. Here l depends only on Λ, n, α and β.

1
2αBn−1 + Λ + y vi

y

v

L(x,v)
p(y, i, j)

αBn + Λ + p(y, i, j)

Figure 1

Now we consider the segments in directions v ∈ Ωi. For any point
y we denote by p(y, i, j) the intersection of L(y,vi) and the hyperplane
Rn−1+y+2(j−1)en. By (5) and routine computations based on elementary
geometry it follows that

L(y,v) ∩ (1
2 int(αBn) + p(y, i, j)) 6= ∅

whenever 1 ≤ j ≤ k and v ∈ Ωi. Therefore (see Figure 1) we have

L(x,v) ∩ (int(αBn) + p(y, i, j)) 6= ∅ (6)

whenever 1 ≤ j ≤ k, v ∈ Ωi and

x ∈ 1
2 int(αBn−1) + y.

Taking
Xi = {p(yj + 2(i− 1)ken, i, j) : yj ∈ X∗},

the system Bn + Λ + Xi is a packing, and Xi (as a part) satisfies the first
assertion of our lemma. In addition, by (4) it follows that 1

2 int(αBn−1) +
Λ + X∗ + 2(i− 1)ken is a covering in Rn−1 + 2(i− 1)ken. Thus, by (6) and
simple arguments we have

S(x, (2kl/β)v) ∩ (int(αBn) + Λ + Xi) 6= ∅
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whenever xn = 0 and v ∈ Ωi. Clearly 2kl/β depends only on Λ, n, α and β.
To deal with all the segments in directions v ∈ Ω we take

X =
l⋃

i=1

Xi

and
c(Λ, n, α, β) = 2kl/β.

Since the cap system Ωi covers Ω, the two assertions of lemma 1 are satisfied.
The proof is done. 2

Proof of theorem 1. Clearly theorem 1 is true when n = 1. Assume the
theorem is true in Rn−1. Without loss of generality, we make the following
assumption:

ASSUMPTION. For any fixed α, α > 0, there exist a lattice Λ, a finite point
set Y , and a constant c′(n− 1, α) such that 3Bn−1 + Λ + Y is a packing in
Rn−1 and

s(1
2αBn−1,Λ + Y ) ≤ c′(n− 1, α). (7)

We proceed to prove the n-dimensional case by induction.
If theorem 1 is true for ε, ε > 0, then it is also true for any number larger

than ε. Thus, without loss of generality, let α = ε2 = 1/M2 for some large
integer M . Considering the corresponding packing αBn + Λ + Y in Rn and
its intersections with hyperplanes Rn−1 + θen, 0 ≤ θ ≤ α/2. By (7) and
routine computations based on elementary geometry it follows that

S(x, 2c′(n− 1, α)v) ∩ (int(αBn) + Λ + Y ) 6= ∅ (8)

whenever xn = 0 and |vn| ≤ α/4c′(n − 1, α). Since 3Bn−1 + Λ + Y is a
packing in Rn−1 we have

λ(Λ + Y ) ≥ 6. (9)

Without loss of generality, we assume that o and u are two points of
Λ + Y such that

‖o,u‖ = λ(Λ + Y ).

Then we define

p(j, z) = (j−1)
3 εu + ((j − 1)ε2 + 2(z − 1)ε)en

and
P = {Λ + Y + p(j, z) : 1 ≤ j ≤ 2M ; z ∈ Z}.
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Observing the projection of P onto Rn−1 it follows that

λ(P ) ≥ 2ε. (10)

In addition, by considering the intersections

(αBn + P ) ∩ (Rn−1 + θen)

and applying (8) we have

S(x, 4c′(n− 1, α)v) ∩ (int(αBn) + P ) 6= ∅ (11)

whenever |vn| ≤ α/4c′(n− 1, α).
Let X be a suitable set of m points and c(Λ, n, α, β) be a suitable number

of lemma 1 corresponding to the lattice Λ of the assumption, α = ε2, and
β = α/4c′(n− 1, α), and write

Λn = {Λ + 2zmen : z ∈ Z}.

Clearly, c(Λ, n, α, β) can be determined by n and α. So we write

c(Λ, n, α, β) = c1(n, α).

Then Bn + Λn + X is a packing in Rn, and

S(x, 2c1(n, α)v) ∩ (int(αBn) + Λn + X) 6= ∅ (12)

whenever |vn| ≥ β. By the definitions of P and Λn, we have

P = Λn + Y + P1,

where
P1 = {p(j, z) : 1 ≤ j ≤ 2M ; 1 ≤ z ≤ m/ε = mM}.

For any xi ∈ X, by the definition of P there are at most four of its
points, say p1, p2, p3 and p4, that

‖Λ + xi,Λ + Y + pj‖ < 2ε.

By (9) and routine arguments, there is a point y ∈ Y such that

‖Λ + xi,Λ + Y \ {y}+ pj‖ ≥ ‖u‖ − 4ε > 5. (13)

6



In this case, if
pj = aju + bjen,

we replace pj by
p′

j = 2M+j+2
3 εu + bjen. (14)

Then it follows from (13), (14) and routine computations that

‖Λ + xi,Λ + Y + p′
j‖ ≥ min{‖Λ + xi,Λ + y + p′

j‖,
‖Λ + xi,Λ + Y \ {y}+ p′

j‖}
≥ 2ε.

Considering the points of X one by one, we obtain a new point set

P ′ = Λn + Y + P ′
1.

Observing the projections of P and P ′ to Rn−1, it follows that the set P ′

satisfies (10). In fact, the modification process is just moving the corre-
sponding layers of small balls in the direction of u. Thus the set P ′ satisfies
also (11). Consequently, defining

P (α) = Λn + X ∪ {Y + P ′
1},

we have
λ(P (α)) ≥ 2ε.

On the other hand, taking

c2(n, α) = max{8c′(n− 1, α), 4c1(n, α)},

by (11) and (12) we have

s(αBn, P (α)) ≤ c2(n, α).

Then, by taking
P (n, ε) = 1

ε P (ε2)

and
c(n, ε) = 1

ε c2(n, ε2),

theorem 1 is proved. 2

REMARK 1. In 1967, Böröczky [1] proved in R3 that there is a ball packing
B3 + P between two hyperplanes H1 and H2 such that any segment [x,y],
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x ∈ H1 and y ∈ H2, intersects int(B3)+P. Clearly, as a corollary of theorem
1, this assertion is true in every dimension.

For any fixed convex body K there are two positive numbers r1 and r2

such that
r1B

n ⊆ K ⊆ r2B
n.

Thus, theorem 2 follows from theorem 1 as a corollary.

§3. Applications and related problems. Suppose Bn + P is a pack-
ing. Let wi(Bn, P ) be the maximal i-th quermassintegral of a convex set
contained in

Rn \ {int(Bn) + P},

and define
wi(Bn) = inf

P
{wi(Bn, P )}.

Similarly, denote by w∗
i (B

n) the corresponding numbers when P is a packing
lattice. As a consequence of theorem 1 and the result just below (1) we have
the following result about wi(Bn) and w∗

i (B
n):

THEOREM 3. For each i with 0 ≤ i ≤ n− 1 we have

w∗
i (B

n) = ∞

and
wi(Bn) ≤ cn,i, (15)

where cn,i is a constant depends on n and i.

Let Kn,i be a convex set such that there is a packing Bn + P ,

Kn,i ⊆ Rn \ {int(Bn) + P},

and
Wi(Kn,i) = wi(Bn) = wi(Bn, P ),

where Wi(·) indicates the i-th quermassintegral. It is clear that Kn,i is a
polytope.

PROBLEM 1. Decide the shapes of these extreme polytopes.

For arbitrary convex body K, applying theorem 2, similar inequality as
(15) can be proved. In addition, one can ask question similar to problem 1.
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